- الموعد القادم:
- 07.04.2025
- الدورة تنتهي في:
- 30.05.2025
- إجمالي المدة:
- 320 Stunden
- التدريب:
- Nein
- اللغات المستخدمة في الدراسة:
- Deutsch
- نوع الفعالية:
- Weiterbildung
- نموذج العرض:
- Virtuelles Klassenzimmer
- E-Learning
- فترة التنفيذ:
- Tagesveranstaltung
- Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
- أدنى عدد للمشاركين:
- 6
- أقصى عدد للمشاركين:
- 25
- التكلفة:
- keine Angaben
- التمويل:
- Bildungsgutschein
- Qualifizierungschancengesetz
- Deutsche Rentenversicherung
- EU/Bund/Land
- نوع المؤهل الدراسي:
- Zertifikat/Teilnahmebestätigung
- اختبار إتمام المؤهل:
- Ja
- اسم المؤهِّل:
- Zertifikat „Big Data Engineer“, Zertifikat „Data Engineer“, Zertifikat „Big Data Specialist“
- اعتمادات العرض:
- SGB III-Maßnahmezulassung
- رقم الإجراء:
- 962/20/24
- عرض للسيدات فقط:
- Nein
- رعاية الأطفال:
- Nein
- جودة المعلومات:
- Suchportal Standard Plus
- المجموعات المستهدفة:
- Der Lehrgang richtet sich an Personen mit abgeschlossenem Studium in der Informatik, Wirtschaftsinformatik, BWL, Mathematik oder vergleichbarer Qualifikation.
- المتطلبات المهنية:
- Programmierkenntnisse (idealerweise Python) und Erfahrungen mit Datenbanken (SQL) werden vorausgesetzt.
- المتطلبات التقنية:
- Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
- منهجية وكالات العمل:
- C 1435-15-10 Datenbankentwicklung, -programmierung - allgemein
المحتويات
Big Data Engineers werden zur interdisziplinären Analyse und Konzeption von IT- und Datenbanklösungen eingesetzt. Der Kurs erläutert daher die Grundlagen von Business Intelligence, den Einsatz von Künstlicher Intelligenz (KI) sowie die Anforderungen des Data Engineerings.
Data Engineer
Grundlagen Business Intelligence (ca. 2 Tage)
Anwendungsfelder, Dimensionen einer BI Architektur
Grundlagen Business Intelligence, OLAP, OLTP, Aufgaben der Data Engineers
Data Warehousing (DWH): Umgang und Verarbeitung von strukturierten, semi-strukturierten und unstrukturierten Daten
Anforderungsmanagement (ca. 2 Tage)
Aufgaben, Ziele und Vorgehensweise in der Anforderungsanalyse
Datenmodellierung, Einführung/Modellierung mit ERM
Einführung/Modellierung in der UML
· Klassendiagramme
· Use-Case Analyse
· Aktivitätsdiagramme
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Datenbanken (ca. 3 Tage)
Grundlagen von Datenbanksystemen
Architektur von Datenbankmanagementsystemen
Anwendung RDBMS
Umsetzung Datenmodell in RDBMS, Normalformen
Praktische und theoretische Einführung in SQL
Grenzen von Relationalen Datenbanken, csv, json
Data Warehouse (ca. 4 Tage)
Star Schema
Datenmodellierung
Erstellung Star Schema in RDBMS
Snowflake Schema, Grundlagen, Datenmodellierung
Erstellung Snowflake Schema in RDBMS
Galaxy Schema: Grundlagen, Datenmodellierung
Slowly Changing Dimension Tables Typ 1 bis 5 – Restating, Stacking, Reorganizing, mini Dimension und Typ 5
Einführung in normal, causal, mini und monster, heterogeneous und sub Dimensions
Vergleich von state und transaction oriented
Faktentabellen, Density und Storage vom DWH
ETL (ca. 4 Tage)
Data Cleansing
· Null Values
· Aufbereitung von Daten
· Harmonisierung von Daten
· Anwendung von Regular Expressions
Data Understanding
· Datenvalidierung
· Statistische Datenanalyse
Datenschutz, Datensicherheit
Praktischer Aufbau von ETL-Strecken
Data Vault 2.0, Grundlagen, Hubs, Links, Satellites, Hash Key, Hash Diff.
Data Vault Datenmodellierung
Praktischer Aufbau eines Data Vault Modells – Raw Vault, Praktische Umsetzung von Hash-Verfahren
Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Big Data Specialist
Was ist Big Data? (ca. 1 Tag)
Volume, Velocity, Variety, Value, Veracity
Chancen und Risiken großer Datenmengen
Abgrenzung: Business Intelligence, Data Analytics, Data Science
Was ist Data Mining?
Einführung in Apache Frameworks (ca. 2 Tage)
Big-Data-Lösungen in der Cloud
Datenzugriffsmuster
Datenspeicherung
MapReduce (ca. 3 Tage)
MapReduce Philosophie
Hadoop Cluster
Verketten von MapReduce Jobs
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Komponenten (ca. 3 Tage)
Kurzvorstellung von verschiedenen Tools
Datenübertragung
YARN-Anwendungen
Hadoop JAVA-API
Apache Spark
NoSQL und HBase (ca. 3 Tage)
CAP-Theorem
ACID und BASE
Typen von Datenbanken
HBase
Big Data Visualisierung (ca. 3 Tage)
Theorien der Visualisierung
Diagrammauswahl
Neue Diagrammarten
Werkzeuge zur Datenvisualisierung
Projektarbeit (ca. 5 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
الهدف التعليمي
Du beherrschst die Prozesse rund um die Zusammenführung, Aufbereitung, Anreicherung und Weitergabe von Daten. Außerdem kannst du große, unstrukturierte Datenmengen mit Hilfe von branchenspezifischer Software verarbeiten. Du verfügst über Kenntnisse im Framework Apache und weißt, wie Daten ansprechend visualisiert werden.
جميع البيانات مقدمة دون ضمان. تتحمل الجهات المقدمة حصرًا مسؤولية صحة البيانات.
07.04.2025 آخر تحديث في ,12.11.2024 نُشر لأول مرة في