- Nächster Termin:
- 07.04.2025
- Kurs endet am:
- 02.05.2025
- Gesamtdauer:
- 160 Stunden
- Praktikum:
- Nein
- Unterrichtssprachen:
- Deutsch
- Veranstaltungsart:
- Weiterbildung
- Angebotsform:
- Virtuelles Klassenzimmer
- E-Learning
- Angebote für Unternehmen Jetzt Anfragen
- Durchführungszeit:
- Tagesveranstaltung
- Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
- Teilnehmer min.:
- 6
- Teilnehmer max.:
- 25
- Preis:
- keine Angaben
- Förderung:
- Bildungsgutschein
- Qualifizierungschancengesetz
- Deutsche Rentenversicherung
- EU/Bund/Land
- Abschlussart:
- Zertifikat/Teilnahmebestätigung
- Abschlussprüfung:
- Ja
- Abschlussbezeichnung:
- Zertifikat „Machine Learning“
- Zertifizierungen des Angebots:
- SGB III-Maßnahmezulassung
- Maßnahmenummer:
- 039/8/25
- Angebot nur für Frauen:
- Nein
- Kinderbetreuung:
- Nein
- Infoqualität:
- Suchportal Standard Plus
- Zielgruppen:
- Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften
- Fachliche Voraussetzungen:
- Die Programmiersprache Python wird vorausgesetzt, Vorkenntnisse im Bereich Data Analytics werden empfohlen.
- Technische Voraussetzungen:
- Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
- Systematik der Agenturen für Arbeit:
- C 1435-10-10 Softwareentwicklung, Programmierung - allgemein
Inhalte
Bei Machine Learning wird künstliches Wissen aus Erfahrung generiert – es ist ein Teilbereich der Künstlichen Intelligenz. IT-Systeme sind in der Lage, Muster in bestehenden Datenbeständen zu identifizieren und mithilfe von Algorithmen eigenständige Lösungen für Probleme zu finden.
Machine Learning
Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen
Überwachtes Lernen (ca. 5 Tage)
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten
Unüberwachtes Lernen (ca. 5 Tage)
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen
Evaluierung und Verbesserung (ca. 2 Tage)
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Bildungsziel
Nach dem Lehrgang besitzt du relevante Kenntnisse im Thema Machine Learning. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Mit Kenntnissen in der Evaluierung und der Verbesserung rundest du dein Wissen ab.
Alle Angaben ohne Gewähr. Für die Richtigkeit der Angaben sind ausschließlich die Anbieter verantwortlich.
Erstmals erschienen am 12.11.2024, zuletzt aktualisiert am 18.04.2025