Reinforcement Learning
- الجهة المقدمة
- alfatraining Bildungszentrum GmbH
- الهاتف
- +49.800.3456500
- البريد الإلكتروني
- wdb-cottbus@alfatraining.de
- البداية
- 07.04.2025
- المدة
- 160 Stunden
- المكان
- 03046 Cottbus
العنوان:/ar/course/5758703/weiterbildung-reinforcement-learning
تمت الطباعة بتاريخ:05.04.2025
Reinforcement Learning als eine der drei Haupttechniken des maschinellen Lernens beschreibt eine Lernmethode, in der Software durch den direkten Austausch mit ihrer Umwelt in Form von Versuch und Irrtum trainiert wird, optimale Ergebnisse zu erzielen. Mache dich im Kurs mit den Konzepten und Ansätzen, aber auch den Herausforderungen dieser Lernmethode vertraut.
Reinforcement Learning
Einführung in Reinforcement Learning (ca. 1 Tag)
Definition und grundlegende Konzepte
Unterschiede zu anderen Lernmethoden
Anwendungsbereiche und Beispiele
Markov Decision Processes (MDPs) (ca. 2 Tage)
Definition und Eigenschaften von MDPs
Value-Funktionen und Policy
Bellman-Gleichungen
Dynamic Programming Ansatz
Q-Learning (ca. 2 Tage)
Definition und Algorithmus
Exploration vs. Exploitation
Konvergenz- und Optimierungseigenschaften
Anwendungen in Spielen, Robotik und anderen Bereichen
Deep Reinforcement Learning (ca. 3 Tage)
Deep Q-Learning
Deep Deterministic Policy Gradients (DDPG)
Actor-Critic-Methoden
Policy Gradient-Methoden
Fortgeschrittene Themen (ca. 4 Tage)
Model-Based Reinforcement Learning
Multi-Agent Reinforcement Learning
Inverse Reinforcement Learning
Meta Reinforcement Learning
Praktische Anwendungen (ca. 3 Tage)
Implementierung von Reinforcement Learning Algorithmen
Anwendung auf ausgewählte Probleme und Fallstudien
Evaluation und Tuning der Algorithmen
Zusammenfassung und Ausblick (ca. 2 Tage)
Zusammenfassung der wichtigsten Konzepte und Ergebnisse
Herausforderungen und zukünftige Entwicklungen in Reinforcement Learning
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Nach Abschluss des Lehrgangs verstehst du die grundlegenden Konzepte des Reinforcement Learning und kennst die Unterschiede zu anderen Lernmethoden. Du bist mit Markov-Entscheidungsprozessen, Q-Learning und Deep Reinforcement Learning vertraut und kannst fortgeschrittene Themen wie Multi-Agent- und Model-Based Reinforcement Learning anwenden. Zudem bist du in der Lage, Reinforcement-Learning-Algorithmen zu implementieren, an realen Problemen zu testen und zu optimieren.
جميع البيانات مقدمة دون ضمان. تتحمل الجهات المقدمة حصرًا مسؤولية صحة البيانات.
04.04.2025 آخر تحديث في ,12.02.2025 نُشر لأول مرة في