Prochain date:
02.06.2025
Le cours se termine le:
27.06.2025
Durée totale:
160 Stunden
Stage:
Nein
Langues d'enseignement:
  • Deutsch
Type de formation:
  • Weiterbildung 
Forme de cours:
  • Virtuelles Klassenzimmer 
  • E-Learning 
Temps d'exécution:
  • Tagesveranstaltung
  • Montag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
Participants min.:
6
Participants max.:
25
Prix:
keine Angaben
Opportunité de financement:
  • Bildungsgutschein 
  • Qualifizierungschancengesetz 
  • Deutsche Rentenversicherung 
  • EU/Bund/Land 
Type de diplôme:
Zertifikat/Teilnahmebestätigung 
Examen final:
Ja
Désignation de diplôme:
Zertifikat „Reinforcement Learning“
Certifications du cours:
  • SGB III-Maßnahmezulassung 
Numéro de certification du cours:
  • 035/118/24
Cours pour femmes uniquement:
Nein
Garde d’enfants:
Nein
Qualité de l’information:
Suchportal Standard Plus

Groupes cibles:
Informatiker:innen, Mathematiker:innen, Elektrotechniker:innen sowie Personen mit Studium der (Wirtschafts-)Ingenieurwissenschaften
Connaissances spécialisées:
Vorkenntnisse im Bereich Machine Learning sowie in der Programmiersprache Python werden vorausgesetzt.
Connaissances techniques:
Die Teilnahme am Unterricht erfolgt über Internet per Videotechnik. Voraussetzung für die Nutzung deiner eigenen Hardware ist die Installation der Applikation alfaview®: https://cloud.alfanetz.de/test Falls du keinen geeigneten Computer hast, erhältst du von uns das technische Equipment, um von zuhause aus am Kurs teilnehmen zu können. Sollten die räumlichen und technischen Voraussetzungen dir eine Teilnahme von zuhause aus nicht ermöglichen, kannst du deinen Kurs auch in einem unserer Bildungszentren absolvieren.
Classification de l’Agence pour l’emploi:
  • C 1435-10-10 Softwareentwicklung, Programmierung - allgemein

Contenus

Reinforcement Learning als eine der drei Haupttechniken des maschinellen Lernens beschreibt eine Lernmethode, in der Software durch den direkten Austausch mit ihrer Umwelt in Form von Versuch und Irrtum trainiert wird, optimale Ergebnisse zu erzielen. Mache dich im Kurs mit den Konzepten und Ansätzen, aber auch den Herausforderungen dieser Lernmethode vertraut.

Reinforcement Learning

Einführung in Reinforcement Learning (ca. 1 Tag) 
Definition und grundlegende Konzepte
Unterschiede zu anderen Lernmethoden
Anwendungsbereiche und Beispiele

Markov Decision Processes (MDPs) (ca. 2 Tage)
Definition und Eigenschaften von MDPs
Value-Funktionen und Policy
Bellman-Gleichungen
Dynamic Programming Ansatz

Q-Learning (ca. 2 Tage)
Definition und Algorithmus
Exploration vs. Exploitation
Konvergenz- und Optimierungseigenschaften
Anwendungen in Spielen, Robotik und anderen Bereichen

Deep Reinforcement Learning (ca. 3 Tage)
Deep Q-Learning
Deep Deterministic Policy Gradients (DDPG)
Actor-Critic-Methoden
Policy Gradient-Methoden

Fortgeschrittene Themen (ca. 4 Tage)
Model-Based Reinforcement Learning
Multi-Agent Reinforcement Learning
Inverse Reinforcement Learning
Meta Reinforcement Learning

Praktische Anwendungen (ca. 3 Tage)
Implementierung von Reinforcement Learning Algorithmen
Anwendung auf ausgewählte Probleme und Fallstudien
Evaluation und Tuning der Algorithmen

Zusammenfassung und Ausblick (ca. 2 Tage)
Zusammenfassung der wichtigsten Konzepte und Ergebnisse
Herausforderungen und zukünftige Entwicklungen in Reinforcement Learning

Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse

Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.

Objectif éducatif

Nach Abschluss des Lehrgangs verstehst du die grundlegenden Konzepte des Reinforcement Learning und kennst die Unterschiede zu anderen Lernmethoden. Du bist mit Markov-Entscheidungsprozessen, Q-Learning und Deep Reinforcement Learning vertraut und kannst fortgeschrittene Themen wie Multi-Agent- und Model-Based Reinforcement Learning anwenden. Zudem bist du in der Lage, Reinforcement-Learning-Algorithmen zu implementieren, an realen Problemen zu testen und zu optimieren.

Toutes les informations sont sans garantie. Les prestataires sont seuls responsables de la justesse des informations mises à disposition.

Première publication le 12.12.2024, dernière mise à jour le 04.04.2025